Radiosensitivity enhancement by combined treatment of celecoxib and gefitinib on human lung cancer cells.

نویسندگان

  • Ji Sun Park
  • Hyun Jung Jun
  • Moon Jun Cho
  • Kwan Ho Cho
  • Jin Soo Lee
  • Jae Ill Zo
  • Hongryull Pyo
چکیده

PURPOSE To characterize the radiation-enhancing effects and underlying mechanisms of combined treatment with celecoxib, a cyclooxygenase-2 selective inhibitor, and gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, in human lung cancer cells. EXPERIMENTAL DESIGN Clonogenic cytotoxicity assays and clonogenic radiation survival assays after treatments with celecoxib and gefitinib with or without radiation were done on three human lung cancer cell lines. Synergisms after combined treatment with celecoxib, gefitinib, and radiation were investigated using isobologram and statistical analyses according to an independent action model. Alterations in apoptosis and cell cycle were measured to identify the mechanisms underlying the cell killing or radiation-enhancing effects of celecoxib and gefitinib combination treatment. Western blots for phosphorylated EGFR, EGFR, cyclooxygenase-2, and G(2) checkpoint molecules were conducted after treatment with celecoxib and/or gefitinib with or without radiation. RESULTS Combination celecoxib, gefitinib, and radiation treatments were shown to be synergistic in causing clonogenic cell deaths in all cell lines tested, but the nature of synergism was cell type specific. The combined drug treatments induced apoptosis in an additive manner in A549 cells and in a synergistic manner in NCI-H460 and VMRC-LCD cells. Celecoxib or gefitinib attenuated radiation-induced G(2)-M arrest, and combined drug treatment additively attenuated radiation-induced G(2)-M arrest in all cell lines. Radiation-induced checkpoint kinase (Chk) 1 and Chk2 phosphorylation were inhibited by celecoxib and gefitinib treatment, respectively. CONCLUSIONS Combined celecoxib and gefitinib treatments were shown to synergistically enhance the effect of radiation on lung cancer cells. The mechanisms underlying these synergistic effects seem to involve the synergistic enhancement of apoptosis and cooperative attenuation of radiation-induced G(2)-M arrest, possibly via Chk1 and Chk2 inhibition, by the combined drug treatments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro

Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...

متن کامل

Cyclooxygenase-2 inhibitor is a robust enhancer of anticancer agents against hepatocellular carcinoma multicellular spheroids

PURPOSE Celecoxib, an inhibitor of cyclooxygenase-2 (COX2), was investigated for enhancement of chemotherapeutic efficacy in cancer clinical trials. This study aimed to determine whether celecoxib combined with 5-fluorouracil or sorafenib or gefitinib is beneficial in HepG2 multicellular spheroids (MCSs), as well as elucidate the underlying mechanisms. METHODS The human hepatocellular carcino...

متن کامل

Cyclooxygenase inhibitors combined with deuterium-enriched water augment cytotoxicity in A549 lung cancer cell line via activation of apoptosis and MAPK pathways

Objective(s): Combination chemotherapy is a rational strategy to increase patient response and tolerability and to decrease adverse effects and drug resistance. Recently, the use of non-steroidal anti-inflammatory drugs (NSAIDs) has been reported to be associated with reduction in occurrence of a variety of cancers including lung cancer. On the other hand, growing evidences suggest that deuteri...

متن کامل

Dihydroartemisinin increases radiosensitivity of A549 lung cancer cells

Background: Radiotherapy is the gold standard in the treatment of lung cancer. However, the radiosensitization of cancerous cells requires further improvement. Here, we investigated the effect of dihydroartemisinin (DHA) on the radiosensitization of non-small cell lung cancer (NSCLC) cells. Methods: Cell proliferation and cell cycle assays were carried out using A549 cells exposed to DHA. The e...

متن کامل

Radiosensitization effect of ZnO nanoparticles in lung cancer cells at clinically relevant megavoltage energy

Introduction: Radiation therapy is one of the major modalities that have long been used in cancer treatment. Radiotherapy is often accompanied by early and late toxicity and side effects and narrow therapeutic window. Similarity in radiation absorption properties of tumors and neighboring healthy tissues is often the reason for low specificity of radiation therapy. Development ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 16  شماره 

صفحات  -

تاریخ انتشار 2006